EXPERIMENT NO.: 14. e DATE:

AIM: TO STUDY THE ENDOCRINE SYSTEM USING CHARTS & SPECIMENS.

REQUIRMENT: - Human endocrine system chart & model.

THEORY:

- The nervous and endocrine systems act together to coordinate functions of all body systems.
- The endocrine system also controls body activities by releasing mediators, called hormones, but the means of control of the two systems are very different.
- A hormone is a mediator molecule that is released in one part of the body but regulates the activity of cells in other parts of the body.
- ❖ Most hormones enter in interstitial fluid and then the bloodstream.
- The circulating blood delivers hormones to cells throughout the body.
- ❖ Both neurotransmitters and hormones exert their effects by binding to receptors on or in their "target" cells.
- Several mediators act as both neurotransmitters and hormones.
- One familiar example is norepinephrine, which is released as a neurotransmitter by sympathetic postganglionic neurons and as a hormone by chromaffin cells of the adrenal medullae.

The body contains two kinds of glands:

- 1. Exocrine glands &
- 2. Endocrine glands

Sr. no	Exocrine glands	Endocrine glands.
1	Exocrine glands (exo outside) secrete their products into ducts that carry the secretions into body cavities, into the lumen of an organ, or to the outer surface of the body.	Endocrine glands (endo within) secrete their products (hormones) into the interstitial fluid surrounding the secretory cells rather than into ducts.
2	Exocrine glands include sudoriferous (sweat), sebaceous (oil), mucous, and digestive glands.	From the interstitial fluid, hormones diffuse into blood capillaries and blood carries them to target cells throughout the body.

The endocrine glands include:

✓ 1- The Pituitary,

✓ 1- Thyroid,

✓ 4- Parathyroid,

✓ 2- Adrenal

✓ 1-Pineal glands

√ 1- Pancreatic gland

✓ 2- Ovaries

✓ 2- Testis

✓ 1- Thymus

HYPOTHALAMUS AND PITUITARY GLAND

- The pituitary gland (or hypophysis) was called the "master" endocrine gland because it secretes several hormones that control other endocrine glands.
- ❖ The pituitary gland itself has a master—the hypothalamus.
- This small region of the brain below the thalamus is the major link between the nervous and endocrine systems.

- Cells in the hypothalamus synthesize at least nine different hormones, and the pituitary gland secretes seven.
- ❖ Together, these 16 hormones play important roles in the regulation of virtually all aspects of growth, development, metabolism, and homeostasis.
- Hypothalamus secreting following hormones
 - 1. Thyrotropin-releasing hormone (TRH)
 - Stimulates release of TSH (thyrotropin) and Prolactin
 - 2. Corticotropin-releasing hormone (CRH)
 - Stimulates release of ACTH (corticotropin)
 - 3. Gonadrotropin-releasing hormone (GnRH)
 - Stimulates release of FSH and LH (gonadotropins)
 - 4. Growth hormone-releasing hormone (GHRH)
 - Stimulates release of growth hormone
 - 5. Growth hormone release inhibiting hormone (GHRIH)
 - Inhibits release of growth hormone
 - 6. Prolactin-releasing hormone (PRH)
 - Stimulates release of prolactin
 - 7. Prolactin release inhibitory hormone (PRIH)
 - Inhibits release of prolactin
 - 8. Dopamine
- Pituitary glands secreting-
 - 1. Growth hormone (GH)
 - 2. Prolactin
 - 3. Adrenocorticotropic hormone (ACTH, Corticotrophin)
 - 4. Thyroid stimulating hormones (TSH, Thyrotrophin)
 - 5. Gonadotrophins- Follicle stimulating hormone (FSH)
 - 6. Luteinizing hormone (LH)
 - 7. Oxytocin
 - 8. Antidiuretic hormone (ADH, Vasopressin)

Structure of pituitary gland

- ❖ The pituitary gland is a pea-shaped structure that measures 1–1.5 cm (0.5 in.) in diameter
- It lies in the hypophyseal fossa of the sphenoid bone.
- It attaches to the hypothalamus by a stalk, the infundibulum.
- thas two anatomically and functionally separate portions:
 - ✓ Anterior pituitary
 - ✓ Posterior pituitary
- The anterior pituitary (anterior lobe), also called the adenohypophysis, accounts for about 75% of the total weight of the gland.

- The posterior pituitary (posterior lobe), also called the neurohypophysis.
- ❖ A third region of the pituitary gland called the pars intermedia.

FEEDBACK MECHANISM OF ENDOCRINE HORMONE SECRETION

- ❖ The neurosecretory cells synthesize the hypothalamic releasing and inhibiting hormones in their cell bodies and package the hormones inside vesicles, which reach the axon terminals by axonal transport.
 - Nerve impulses [external stimuli] stimulate the vesicles to undergo exocytosis.
 - The hormones then diffuse into the primary plexus of the hypophyseal portal system.
 - The hypothalamic hormones flow with the blood through the portal veins and into the secondary plexus.
- Hypothalamic hormones then act on anterior pituitary cells.
- Hormones secreted by anterior pituitary cells pass into the secondary plexus capillaries, which drain into the anterior hypophyseal veins and out into the general circulation.
 - Anterior pituitary hormones then travel to target tissues throughout the body.
- Those anterior pituitary hormones that act on other endocrine glands are called tropic hormones

D. PH 1ST YEAR: HUMAN ANATOMY AND PHYSIOLOGY – PRACTICAL

ENDOCRINE GLANDS AND THEIR SECRETIONS

Sr. No	Endocrine Gland	Hormone	Function
	Anterior	Growth Hormone [Gh]	Promotes growth of cells
	Pituitary	Prolactin	Promotes breast-milk production
	Gland	Thyrotrophic Hormone [TSH]	Stimulating thyroid gland
		Follicle Stimulating Hormone [FSH]	Controls the production of eggs and sperm
1		Luteinizing Hormone [LH]	Controls oestrogen and testosterone production as well as ovulation
	Intermediate	Melanocyte Stimulating Hormone [MSH]	Stimulates melanin in skin
	Posterior Pituitary	Oxytocin	Helps with lactation, childbirth, and mother- child bonding
	Gland	Vasopressin	Promote the retention of water by the kidneys and increase blood pressure.
2	Thyroid Gland	Thyroid Hormone [T ₃ & T ₄]	Helps control several body functions, including the rate of metabolism and energy
2	D 1 '1	B 1 '111	levels
3	Parathyroid Gland	Parathyroid Hormone [PTH]	Regulation of blood level of Calcium, Magnesium & Hypophosphate Controls calcium levels in bones and blood
4	Adrenal Gland	Adrenaline	Increases blood pressure, heart rate, and metabolism in reaction to stress
		Aldosterone	Controls the body's salt and water balance
		Cortisol	Plays a role in stress response
		Dehydroepiandrosterone Sulfate (DHEA-S)	Aids in production of body odor and growth of body hair during puberty
5	Pancreas	Glucagon	Helps increase levels of blood glucose (blood sugar)
		Insulin	Helps reduce your blood glucose levels
6	Pineal Gland	Melatonin	Controls sleep-wake cycles
7	Ovary	Progesterone	Helps prepare the body for pregnancy when an egg is fertilized
J		Estrogen	Works to regulate the menstrual cycle, maintain pregnancy, and develop female sex characteristics; aids in sperm production
8	Ovary, Testes, Adrenal	Testosterone	Contributes to sex drive and body density in males and females as well as development of male sex characteristics

NOTE: Key to remember name of Pituitary hormones-----"GOAT FLAP" GH, Oxytocin, ACTH, TSH, FSH, LH, ADH, Prolactin.

THYROID GLAND

- The butterfly-shaped thyroid gland is located just inferior to the larynx (voice box).
- It is composed of right and left lateral lobes, one on either side of the trachea.
- ❖ The normal mass of the thyroid is about 30 g. It is highly vascularized and receives 80–120 mL of blood per minute.
- Microscopic spherical sacs called thyroid follicles make up most of the thyroid gland.
- The follicular cells produce two hormones: thyroxine which is also called tetraiodothyronine because it

- ❖ A few cells called parafollicular
- cells or C cells lie between follicles. They produce the hormone calcitonin homeostasis, which helps regulate calcium.

Actions of Thyroid Hormones:

- Increase basal metabolic rate
- Stimulate protein synthesis
- Increase body temperature (calorigenic effect)
- Stimulate synthesis of Na/K+ ATPase
- ❖ Increase the use of glucose and fatty acids for ATP production
- * Regulate development and growth of nervous tissue and bones
- Enhance some actions of catecholamines
- Stimulate lipolysis

REGULATION OF THYROID HORMONE

PARATHYRIOD GLAND

- A Partially embedded in the posterior surface of the lateral lobes of the thyroid gland are several small, round masses of tissue called the parathyroid glands.
- Each has a mass of about 40 mg.
- Microscopically, the parathyroid glands contain two kinds of epithelial cells.
- The more numerous cells, called chief (principal) cells, produce parathyroid hormone PTH), also called parathormone.

ADRENAL GLANDS

- The paired adrenal (suprarenal) glands, one of which lies superior to each kidney in the retroperitoneal space, have a flattened pyramidal shape.
- ❖ Each adrenal gland is 3–5 cm in height, 2–3 cm in width, and a little less than 1 cm thick, with a mass of 3.5–5 g.
- During embryonic development, the adrenal glands differentiate into two structurally and functionally distinct regions:
 - 1. A large, peripherally located adrenal cortex, comprising 80–90% of the gland, and
 - 2. A small, centrally located adrenal medulla
- ❖ A connective tissue capsule covers the gland.
- The adrenal glands, like the thyroid gland, are highly vascularized.
- The adrenal cortex produces steroid hormones that are essential for life.
- Complete loss of adrenocortical hormones leads to death due to dehydration and electrolyte imbalances in a few days to a week, unless hormone replacement therapy begins promptly.
- The adrenal medulla produces three catecholamine hormones—norepinephrine, epinephrine, and a small amount of dopamine.

Adrenal gland:

- ❖ Medulla: MEN Medulla, Epinephrine, Norepinephrine.
- ❖ Cortex: has 3 layers: GFR- Glomerulosa, Fasiculata, Reticularis
- their hormones are: Make Good Sweets
- ❖ Mineralocorticoids, (aldosterone), Glucocorticoids, (cortisol), Sex hormone, (androgen).
- ❖ All adrenal gland hormones together: "CANES"
- Cortisol, Aldosterone, Norepinephrine, Epinephrine, Sex hormone.

Aldosterone

- Regulation of aldosterone secretion by the renin-angiotensin-aldosterone (RAA) pathway.
- ❖ Aldosterone helps regulate blood volume, blood pressure, and levels of Na, K, and H in the blood.

PANCREAS

- ❖ The pancreas is both an endocrine gland and an exocrine gland.
- ❖ A flattened organ that measures about 1 2. 5–15 cm (4.5–6 in.) in length, the pancreas is located in the curve of the duodenum, the first part of the small intestine, and consists of a head, a body, and a tail.
- Roughly 99% of the cells of the pancreas are arranged in clusters called acini.
- The acini produce digestive enzymes, which flow into the gastrointestinal tract through a network of ducts.
- ❖ Scattered among the exocrine acini are 1–2 million tiny clusters of endocrine tissue called pancreatic islets or islets of Langerhans.
- ❖ Abundant capillaries serve both the exocrine and endocrine portions of the pancreas.

Cell Types in the Pancreatic Islets

Each pancreatic islet includes four types of hormone-secreting cells:

- 1. Alpha or A cells constitute about 17% of pancreatic islet cells and secrete glucagon.
- 2. Beta or B cells constitute about 70% of pancreatic islet cells and secrete insulin.
- 3. Delta or D cells constitute about 7% of pancreatic islet cells and secrete somatostatin.
- 4. F cells constitute the remainder of pancreatic islet cells and secrete pancreatic polypeptide.

Low blood glucose stimulates release of glucagon; high blood glucose stimulates secretion of insulin.

www.drnaitiktrivedi.com

129

PINEAL GLAND

- The pineal gland is a small endocrine gland attached to the roof of the third ventricle of the brain at the midline.
- ❖ Part of the epithalamus, it is positioned between the two superior colliculi, has a mass of 0. 1−0.2 g, and is covered by a capsule formed by the pia mater.
- The gland consists of masses of neuroglia and secretory cells called pinealocytes.
- * The pineal gland secretes melatonin, an amine hormone derived from serotonin.
- Melatonin appears to contribute to the setting of the body's biological clock and maintain sleep.

SIGNATURE OF TEACHER