EXPERIMENT NO.: 5

DATE:

AIM: TYPES OF PRE-CLINICAL EXPERIMENTS: IN-VIVO, IN-VITRO, EX-VIVO, ETC Introduction:

Drug Testing methods in pharmacology are traditionally called by their Latin names, such as in vivo, ex vivo, in vitro, in Silico and more.

- 1. The term in vivo refers to a type of experiment that is carried out within a whole, living organism, such as a plant or animal.
- 2. In vitro is exact opposite to in vivo. Instead experiment perform in living organisms studies or experiments conducted on microorganisms and cells outside of their normal biological environment whether that be in a test tube, culture dish, or so on.

Common examples of in vitro experiments include

- Cells derived from multicellular organisms (cell culture or tissue culture)
- Subcellular components (e.g. mitochondria or ribosomes)
- Cellular or subcellular extracts (e.g. wheat germ or reticulocyte extracts)
- Purified molecules in the test tube (often proteins, DNA, or RNA, either individually or in combination).
- 3. Ex vivo procedures often involve living cells or tissues taken from an organism and cultured in a laboratory apparatus, usually under sterile conditions with no alterations for up to 24 hours. Experiments lasting longer than this using living cells or tissue are typically considered to be in vitro.
 - There is no major difference between in vitro and ex vivo preclinical study, In vitro means one which is performed outside the body, in the test tube with the same natural conditions. Ex vitro means one which is performed outside the body with minimal alteration of the natural conditions.

Examples of ex vivo models include:

- Cardiovascular safety models using cardiac tissues or blood vessels
- Inflammatory studies using skin biopsies
- Isolated perfused heart models
- 4. In silico approaches are represented by techniques that use software to analyze data and often involve computational models or simulations based on existing information of closely related phenomena. The output can then be used to make predictions and suggest hypotheses as a basis for in vivo, ex vivo, and in vivo models

 The greatest advantage of in silico methods is that they are usually faster and cheaper than classical tests, whilst also reducing the number of animals to in vivo assays

Type of	In vivo	In vitro	Ex Vivo
Study			
Definition	Studies "within a living	Study performed outside the	Study performed outside the
	organism"	body, in the test tube withe the	body with minimal alteration of
	59499	same natural conditions	the natural conditions.
Cost	Very expensive	Relatively low cost	Very low cost
Time	Long and extensive	Relatively fast	Within 24 hrs
Example	Clinical trials and animal studies like local anesthetic effect on rabbit eye, pyrogen testing using rabbit.	Effect of various drug toxicity on vital organ of animal etc.	Common isolated organ experiment in laboratory like various drug effect on rat ileum, tracheal chain etc
Pros	More specific and reliable for observing biological effects in a test subject	Relative simplicity, species specificity, experimental control	Relative simplicity, species specificity, experimental control with minimum alteration of biological conditions
Cons	Strict regulations and compliance standards	Chances in alteration in result due to alteration in physiological conditions	Chances in alteration in result due to alteration in physiological conditions

Table 1: difference between In vivo, In vitro and Ex vivo model

Figure 1: Sites for different preclinical model

Method	Application	Advantages	Limitations
In vitro techniques			
Conventional	High-throughput testing	Controlled dosing Easy to perform	Exposure of non- differentiated cells Non-physiological exposure
exposure	Initial screening for short-term effects		No information on permeation
(submersed)		Efficient use of material	No complex (multicellular) response No long-term exposure
ALI		Controlled dosing	Non-physiological exposure
(monoculture) +	Mechanistic uptake and toxicity studies	Study of differentiated cells	No complex (multicellular) response
Suspension		Efficient use of material	No long-term exposure
exposure	*		Advanced technology
ALI	Mechanistic uptake and toxicity studies	Relatively controlled dosing	No complex (multicellular) response
(monoculture) +		Study of differentiated cells	No long-term exposure
Aerosol exposure	Permeation studies		Complex exposure system
chamber		Efficient use of material	Aerosol loss in the exposure system
			More complicated technology
ALI (mono/	Mechanistic uptake and toxicity studies	Controlled cellular dose	No long-term exposure
co-culture) +	Permeation studies	Study of differentiated cells	Potential shear stress of the cells
Aerosol spraying		Efficient use of material	More complicated technology
30		Controlled dosing	Technically demanding
ALI (co-culture) +		Efficient use of material	No long-term exposure
Aerosol exposure			Aerosol loss in the exposure system
chamber		Study on several cell types	Limited complex (multicellular)
			response
Ex-vivo techniques			
	Absorption studies	Relatively controlled dosing	Technically demanding
Isolated		Complex (multicellular) response	Short observation time
perfused lung		Physiological exposure	
		Efficient use of material	
	Toxicity studies	Controlled cellular dose	Non-physiological exposure
Precision-cut		Complex (multicellular)	
lung slices		response	Short observation time
= .		Efficient use of material	
In-vivo techniques			
E 0100	ADME A F	Physiological way of	V
	ADME studies	exposure	Large amount of material needed
Whole-body	Short-term/long-term, single exposure and multiple exposure	No anesthesia or discomfort	Dose not well defined
exposure		for animals	
90 M		Complex (multicellular) response	

Table2: Types of animal model, their application, advantages and limitation

TEACHER'S SIGNATURE